Урок №12 (11.10.2007)

Электромагнитные колебания. Механический эквивалент электрических сетей. Колебательный контур.

0. Небольшое повторение

Рассмотрим последовательную RCL-цепочку, подключенную к генератору переменного тока. Вспомним некоторые основы теории электрических цепей.

- ➤ Т.к. цепь без разветвлений, ток в любой точке цепи один и тот же в любой момент времени.
- ightharpoonup Ток это заряд, протекающий через данную точку схемы за единицу времени, другими словами это скорость протекания заряда: $I = \frac{dq}{dt} = \dot{q}$.
- ightharpoonup Сумма падений напряжений на сопротивлении (U_R) , ёмкости (U_C) и индуктивности (U_L) в любой момент времени равна разности потенциалов на источнике.
- ightharpoonup Падение напряжения на сопротивлении определяется законом Ома: $U_{\it R}={\it IR}$.
- \blacktriangleright Напряжение на конденсаторе по определению равно $U_C=q/C$.
- ho На катушке в случае изменяющегося тока возникает *противо-ЭДС*, равная $\varepsilon = -L \frac{dI}{dt} = -L \frac{d^2q}{dt^2} = -L\ddot{q} \; .$

1. Колебательный контур

Простейший колебательный контур состоит из соединенных между собой катушки индуктивности и конденсатора.

 $U_L + U_C = 0$. ЭДС на катушке в любой момент равно по модулю и противоположно по направлению ЭДС самоиндукции (т.к. сопротивление катушки равно нулю), поэтому $U_L = -\varepsilon = L \frac{dI}{dt}$. Сводя все воедино, получим уравнение:

$$L\ddot{q} + \frac{q}{C} = 0.$$

Пусть $\omega_0^2 = 1/LC$, тогда уравнение перепишется в виде

$$\ddot{q} + \omega_0^2 q = 0.$$

Решение этого уравнения нам известно:

$$q(t)=Q\sin\left(\omega_{0}t+\alpha\right)$$
, где $\omega_{0}=\sqrt{\frac{1}{LC}}$, а Q и α определяются из начальных условий.

В колебательном контуре происходит перекачка энергии магнитного поля в энергию электрического поля и наоборот.

2. Затухающие электромагнитные колебания

Если между катушкой и конденсатором вставить сопротивление, характеризующее тепловые потери в колебательном контуре, получим уравнение:

$$\boldsymbol{U}_{\!\scriptscriptstyle L} + \boldsymbol{U}_{\!\scriptscriptstyle C} + \boldsymbol{U}_{\!\scriptscriptstyle R} = \boldsymbol{0}$$
 , а учитывая, что $\boldsymbol{U}_{\!\scriptscriptstyle R} = \boldsymbol{I} \boldsymbol{R} = \dot{q} \boldsymbol{R}$, получим

$$L\ddot{q} + R\dot{q} + q/C = 0$$
.

Обозначая $\omega_0^2 = 1/LC$, $2\gamma = R/L$, получим уравнение затухающих колебаний:

$$\ddot{q} + 2\gamma \dot{q} + \omega_0^2 q = 0.$$

Решением его, как известно, является функция $q(t) = Q_0 e^{-\gamma t} \sin(\omega t + \alpha)$, где $\omega = \sqrt{\omega_0^2 - \gamma^2}$.

Число $\tau = 1/\gamma = 2L/R$ называется временем жизни колебаний, а число $\eta = \pi \cdot \tau/T$ – добротностью контура.

Добротность контура пропорциональна количеству периодов за время жизни колебаний.

3. Механический эквивалент электрических сетей.

В механике и в теории электрических сетей переменного тока встречается подозрительно много «похожих формул». Например:

Механика	Электричество
Координата х	Заряд q
Macca m	Индуктивность <i>L</i>
Жёсткость пружины k	Ёмкость-1 1/С
Коэф. вязкого трения β	Сопротивление <i>R</i>
Скорость у	Ток І

4. Задача

Написать уравнение для I(t) и для зависимости зарядов на конденсаторах от времени на схеме, показанной на рисунке, если в начальный момент (т.е. в момент замыкания ключа) конденсатор C_1 заряжен до заряда q.

Решение. Пусть через малый промежуток времени после замыкания ключа знаки зарядов и направления тока выглядят, как на рисунке.

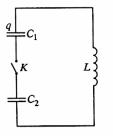


Рис. 161. В начальный момент времени заряжен только один конденсатор

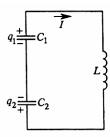


Рис. 162. Заряды конденсаторов и ток в контуре после замыкания ключа

Тогда $q_1+q_2=q$ и сумма напряжений на всех элементах равна нулю: $-\frac{q_1}{C_1}+L\frac{dI}{dt}+\frac{q_2}{C_2}=0 \;.$ При этом ток через катушку равен $I=\frac{dq_2}{dt}=-\frac{dq_1}{dt}$. Исключая $\frac{dI}{dt}$ и q_2 , получим уравнение:

$$q_1 \left(\frac{1}{C_1} + \frac{1}{C_2} \right) + L\ddot{q}_1 - \frac{q}{C_2} = 0.$$

Обозначим через $\omega_0^2=\frac{1}{LC_0}$, где $C_0=\frac{C_1C_2}{C_1+C_2}$, получим $\ddot{q}_1+\omega_0^2q_1-\frac{q}{LC_2}=0$. Произведем замену: $Q(t)=q_1(t)-q\frac{C_1}{C_1+C_2}$. Заметим, что $\ddot{Q}(t)=\ddot{q}_1(t)$. В итоге получим уравнение $\ddot{Q}+\omega_0^2Q=0$, имеющее решением $Q(t)=Q_0\sin\left(\omega_0t+\alpha\right)$. Тогда для $q_1(t)$ получим:

$$q_1(t) = q \frac{C_1}{C_1 + C_2} + Q_0 \sin(\omega_0 t + \alpha).$$

Константы Q_0 и α найдем из условий $q_1(0)=q$, I(0)=0 . $I(t)=\omega_0Q_0\cos(\omega_0t+\alpha)$.

Итак, $\alpha = \frac{\pi}{2}$, $Q_0 = q \frac{C_1}{C_1 + C_2}$ и полное решение:

$$q_1(t) = q \frac{C_1}{C_1 + C_2} \left(1 + \frac{C_2}{C_1} \cos \omega_0 t \right), \ I(t) = q \sqrt{\frac{C_2}{L(C_1 + C_2)C_1}} \sin \omega_0 t.$$